jump to navigation

Scientific American

I’m enrolling Scientific American in my Greenwashers Hall of Shame for this ridiculous blog post mixing up radioactive decay in the earth’s crust and mantle with nuclear fission. I guess the author David Biello wants to reassure the public that nuclear fission is a natural phenomenon that accounts for half the planet’s internal heat, so why should anyone be concerned about nuclear reactors?

Nuclear Fission Confirmed as Source of More than Half of Earth’s Heat

By David Biello | Jul 18, 2011 05:31 PM

Nuclear fission powers the movement of Earth’s continents and crust, a consortium of physicists and other scientists is now reporting, confirming long-standing thinking on this topic. Using neutrino detectors in Japan and Italy—the Kamioka Liquid-Scintillator Antineutrino Detector (KamLAND) and the Borexino Detector—the scientists arrived at their conclusion by measuring the flow of the antithesis of these neutral particles as they emanate from our planet. Their results are detailed July 17 in Nature Geoscience. (Scientific American is part of the Nature Publishing Group.)

Neutrinos and antineutrinos, which travel through mass and space freely due to their lack of charge and other properties, are released by radioactive materials as they decay. And Earth is chock full of such radioactive elements—primarily uranium, thorium and potassium. Over the billions of years of Earth’s existence, the radioactive isotopes have been splitting, releasing energy as well as these antineutrinos—just like in a man-made nuclear reactor. That energy heats the surrounding rock and keeps the elemental forces of plate tectonics in motion. By measuring the antineutrino emissions, scientists can determine how much of Earth’s heat results from this radioactive decay.

How much heat? Roughly 20 terawatts of heat—or nearly twice as much energy as used by all of humanity at present—judging by the number of such antineutrino particles emanating from the planet, dubbed geoneutrinos by the scientists. Combined with the 4 terawatts from decaying potassium, it’s enough energy to move mountains, or at least cause the collisions that create them.

The precision of the new measurements made by the KamLAND team was made possible by an extended shutdown of the Kashiwazaki-Kariwa nuclear reactor in Japan, following an earthquake there back in 2007. Particles released by the nearby plant would otherwise mix with naturally released geoneutrinos and confuse measurements; the closure of the plant allowed the two to be distinguished. The detector hides from cosmic rays—broadly similar to the neutrinos and antineutrinos it is designed to register—under Mount Ikenoyama nearby. The detector itself is a 13-meter-diameter balloon of transparent film filled with a mix of special liquid hydrocarbons, itself suspended in a bath of mineral oil contained in a 18-meter-diameter stainless steel sphere, covered on the inside with detector tubes. All that to capture the telltale mark of some 90 geoneutrinos over the course of seven years of measurements.

The new measurements suggest radioactive decay provides more than half of Earth’s total heat, estimated at roughly 44 terawatts based on temperatures found at the bottom of deep boreholes into the planet’s crust. The rest is leftover from Earth’s formation or other causes yet unknown, according to the scientists involved. Some of that heat may have been trapped in Earth’s molten iron core since the planet’s formation, while the nuclear decay happens primarily in the crust and mantle. But with fission still pumping out so much heat, Earth is unlikely to cool—and thereby halt the collisions of continents—for hundreds of millions of years thanks to the long half-lives of some of these elements. And that means there’s a lot of geothermal energy—or natural nuclear energy—to be harvested.

I’ve decided to quote this blog entry in full, ignoring the copyright, because I expect Scientific American to correct the text. I doubt everyone who works there is dumb or disingenuous enough to mix up decay of radioactive elements with nuclear fission. As one commenter has already noted, the source article didn’t even mention fission. I expect, like most of the scientific mainstream, Scientific American is staunchly in favor of nuclear power, but that’s no excuse. Radioactive decay and fission are as different as night and day. Nuclear fission doesn’t happen spontaneously; radioactive decay does. Half lives apply to the latter; they have no impact on nuclear fission whatsoever, and to the best of my knowledge, none of Earth’s internal heat comes from fission. I’m also dubious about this claim that half of that heat comes from radioactive decay, but that’s another story. Just because one nearby reactor was shut down doesn’t mean the scientists could discount emissions from all the other reactors on the planet. Japan happens to have quite a few of those, and I’m sure they weren’t all shut down, not to mention the fact that radioactive decay occurs profusely within reactors even while they’re shut down. But scientists are in the habit of discounting any factor they consider insignificant; they do this to simplify otherwise extremely tedious or impossible calculations.


1. Theo Richel - August 16, 2011

I agree with you that Scienrtific American mixed up decay and fission and that is stupid. However the finding of fission in the core of the reath maybe the next thing to be discovered. If I understand it right decay and fission products van be distinguished by the energy of the anineutrinos 2-3 Mev for decay and 10 MeV for fusion. Apparently the Kamland detector could detect all of these but not distinguish between antineutrinos from fission reactors in the core of the earth and fission reactor in Japan, because it cannot see from which directirons de antioneutrinos come.. That is why the Foundation Earth ( http://www.geoneutrino.nl/index.php ) is trying to build a direction sensitive antineutrino detector some kilometers below the soil in thge Dutch Antilles.

2. angryscientist - July 25, 2013

Scientific American is peddling more biotechnology propaganda as fact and good science in this article by Nina Fedoroff, Can We Trust Monsanto with Our Food? The real truth about GMOs.
I wonder how this magazine defines science. Obviously anyone who criticizes the march of progress must not have any science to back up their argument. Hah! Unfortunately it’s Monsanto that has cooked the books to make their science seem sound, not the other way around, as the author so smugly asserts.

Most early alarms about new technologies fade away as research accumulates without turning up evidence of deleterious effects. This should be happening now because scientists have amassed more than three decades of research on GM biosafety, none of which has surfaced credible evidence that modifying plants by molecular techniques is dangerous.

Note that word, credible. Corporate apologists always love to claim that none of their critics are credible. Why is that? Maybe because their credibility is based on such hot air? The biotech companies have made it almost impossible for independent researchers to investigate their products, allegedly to protect their patent rights. The government regulators play along, riddled with conflicts of interest as they circle through the revolving door. No? Why did Obama make Michael Taylor, a top attorney for Monsanto, his food safety czar? As if Monsanto gives a hoot about food safety! But I’m sure they relish this opportunity to establish food safety regulations! One way or another, they will put organic farming out of business!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: